Taurine chloramine downregulates the production of proinflammatory mediators

Taurine chloramine produced from taurine under inflammation provides anti-inflamnatory and cytoprotective effects

Chaekyun Kim  1 Young-Nam Cha

Abstract

Taurine is one of the most abundant non-essential amino acid in mammals and has many physiological functions in the nervous, cardiovascular, renal, endocrine, and immune systems. Upon inflammation, taurine undergoes halogenation in phagocytes and is converted to taurine chloramine (TauCl) and taurine bromamine. In the activated neutrophils, TauCl is produced by reaction with hypochlorite (HOCl) generated by the halide-dependent myeloperoxidase system. TauCl is released from activated neutrophils following their apoptosis and inhibits the production of inflammatory mediators such as, superoxide anion, nitric oxide, tumor necrosis factor-α, interleukins, and prostaglandins in inflammatory cells at inflammatory tissues. Furthermore, TauCl increases the expressions of antioxidant proteins, such as heme oxygenase 1, peroxiredoxin, thioredoxin, glutathione peroxidase, and catalase in macrophages. Thus, a central role of TauCl produced by activated neutrophils is to trigger the resolution of inflammation and protect macrophages and surrounding tissues from being damaged by cytotoxic reactive oxygen metabolites overproduced during inflammation. This is achieved by attenuating further production of proinflammatory cytokines and reactive oxygen metabolites and also by increasing the levels of antioxidant proteins that are able to scavenge and diminish the production of cytotoxic oxygen metabolites. These findings suggest that TauCl released from activated neutrophils may be involved in the recovery processes of cells affected by inflammatory oxidative stresses and thus TauCl could be used as a potential physiological agent to control pathogenic symptoms of chronic inflammatory diseases.

Inflammation, taurine and essential fatty acids in schizophrenia, Parkinson’s disease and Alzheimer’s disease

Inflammation is associated with schizophrenia, Parkinson’s disease and Alzheimer’s disease. A point I have strongly stressed is that the transsulfuration pathway is dysregulated in many neurological illnesses. With the transsulfuration pathway dysregulated there will de decreased levels of L-cysteine which is synthesized via the transsulfuration pathway. Decreased levels of l-cysteine will lead to decreased levels of taurine. Taurine is synthesized from L-cysteine. The bile acid, taurocholate, is synthesized from taurine. With low levels of taurine, essential fatty acids are not absorbed sufficiently. Inflammation in schizophrenia, Parkinson’s disease and Alsheimer’s disease could be due to low levels of taurine which leads to failures to absorb sufficient fatty acids with inflammation resulting.

Taurine chloramine which is synthesized from taurine is also an important immunomodulatory.