Bipolar disorder and bone mineral density

There are decreases in bone mineral density in drug naive individuals with bipolar disorder compared to age- and gender-matched healthy controls. Individuals with bipolar I disorder have have high homocysteine levels. High homocysteine levels in individuals with bipolar disorder point to the transsulfuration pathway being dysregulated. Via the transsulfuration pathway L-cysteine is synthesized from homocysteine. L-taurine is synthesized from L-cysteine.

Taurine is required for calcium homeostasis. Taurine, also, is conjugated to various bile acids. Bile acids are are required for absorption of fat-soluble vitamins. Vitamin D and vitamin K are fat-soluble vitamins. Individuals with bipolar disorder are 4.7 times more likely to be vitamin D deficient than individuals amongst the general population of the Netherlands, however, deficient levels of vitamin D are not specific to bipolar disorder but are also present in individuals with schizophrenia. The taurine transporter is present in osteoblasts. Osteoblasts synthesize bone.

With taurine metabolism dysregulated calcium homeostasis is dysregulated and absorption of vitamin D and vitamin K is decreased. Decreases in bone mineral density in bipolar disorder could be due to dysregulation of the transsulfuration pathway which dysregulates calcium homeostasis and vitamin D and vitamin K absorption resulting in low bone mineral density.

Bone mineral density and major depression

Decreased bone mineral density is associated with major depression. There are also low vitamin D levels in individuals who are depressed. Ahedonia in major depression could be due to hidden osteomalicias. Taurine, vitamin D and vitamin K could treat hidden osteomalacias present in major depression. Supplements used to treat hidden osteomalicias, would not be effective for intense sadnesses that frequently occur with major depressions.

Bone mineral density and negative symptoms of schizophrenia

A meta-analysis points to bone mineral density being significantly decreased in individuals with schizophrenia compared to healthy controls. Bone mineral density in schizophrenia could be decreased in individuals with schizophrenia due to dysregulation of the transsulfuration pathway. Taurine is synthesized from L-cysteine which is synthesized via the transsulfuration pathway.

Taurine is required for intracellular calcium homeostasis. Bile acids are required for absorption of fat soluble vitamins. Vitamin D and vitamin K are fat soluble vitamins involved in bone formation. Various bile acids are synthesized from taurine. With deficiencies of taurine calcium homeostasis can be upset and there can also be deficiencies of vitamin D and vitamin K which could lead to low bone mineral density in schizophrenia.

Low bone mineral density in schizophrenia point to there being hidden osteomalicias in schizophrenia. With taurine deficiencies intracellular calcium homeostasis can be upset, though extracellular calcium levels could be normal, leading to a hidden osteomalicias.

Dysregulation of the transsulfuration pathway can result in epigenetic changes whereby there could be localized osteomalacias. Given osteomalacias due to taurine deficiencies develop in the back of the head negative symptoms of schizophrenia could develop due to compressions of cerebellums. There are a wide range of symptoms in schizophrenia so individuals with schizophrenia do not present as only having back of the head pains which makes correct diagnoses difficult though x-ray studies of backs of skulls in individuals with symptoms of schizophrenia could go a long ways in making correct diagnoses straightforward.

Negative symptoms of schizophrenia could be treated by supplementation with taurine, Vitamin K2 MK-7, which a kind of vitamin K that is highly absorbed, and vitamin D3. As negative symptoms of schizophrenia are due to hidden osteomalicias taurine, vitamin K2 MK-7 could take a long while to be completely effective. To treat the range of symptoms seen is schizophrenia due to dysregulations of the transsulfuration pathway supplements, beyond supplements that treat hidden osteomalicias, are required.

The cerebellum and schizophrenia

The cerebellum sits at the bottom back of the brain. A meta-analysis indicates there are structural and functional abnormalties in the cerebellum in schizophrenia.

Intraellular calcium homeostasis is regulated by taurine. Taurine is synthesized from L-cysteine wihch is synthesized from homocsysteine via the transsulfuration pathway.

Hidden oosteomalacia due to dysregulation of intracellular calcium homeostasis arising from low levels of taurine stemming from dysregulation of the transsulfuration pathway .could be wide spread. In individuals with schizohpenia there could be hidden osteomalacia that do not show as back pain but could affect necks compressing cerebellums leading to severe psychological effects. Calcium blood levels could be low normal or slightly low.

Some x-ray studies of bones is the neck region are called for in schizophrenia. If cerebellums are being compressed by a hidden osteomalacia treatmens for a range of psychological symptoms in schizophrenia could be much, much different. Taurine, vitamin D, vitamin K and calcium carbonate could treat the hidden osteomalicia addressing structural and functional brain abnormalties in schizophrenia. Bone mineral densities are lower in older indivduals with schizophrenia compared to indivduals without schizophrenia. Early diagnosis would be a key.

With cerebellums compressed there could negative symptoms of schizohrenia. Negative symptoms are are deficit symptoms where such deficits could be due to deficits in the ability of the cerebellum to function due to being compressed from hidden osteomalacia.