Biotin and beta-oxidation

Acetyl-CoA carboxylase is a biotin-dependent enzyme that catalyzes the irreversible carboxylation of acetyl-CoA to produce malonyl-CoA. Malonyl-CoA inhibits the rate-limiting step in beta-oxidation of fatty acids. Malonyl-CoA inhibits fatty acids from associating with carnitine by regulating the enzyme carnitine acyltransferase.

Malonyl-CoA also plays a key role in chain elongation in fatty acid biosynthesis

Biotin supplementation would then both inhibit beta-oxidation and assist with chain elongation in fatty acid biosynthesis.

I have been arguing that increases is beta-oxidation that result from increased intakes of polyphenols can lead to difficulties in schizophrenia. Given the dual functions of malonyl-CoA in inhibiting beta-oxidation and assisting with fatty acid elongation if there is excessive beta-oxidation there could be difficulties in fatty acid elongation. Supplemental biotin would decrease beta-oxidation and increase fatty acid elongation which would be headed in the right direction. Biotin would not be supplemented at the same time as pantothenic acid as pantothenic acid is a competitive inhibitor of biotin transport.

Polyphenols, homocysteine, Parkinson’s disease and Alzheimer’s disease

High homocysteine levels indicate the transsulfuration pathway (homocysteine to L-cysteine) is dysregulated. Taurine is synthesized from L-cysteine. Taurine is needed to form various bile acids. Bile acids are needed for fat absorption.

Polyphenols can increase beta-oxidation which can lead to serious difficulties if there are difficulties in fat absorption which are likely if there are high homocysteine levels.

Many illnesses for which polyphenols have been postulated to be treatments are associated with high levels of homocysteine, however, where there are high homocysteine levels there could be difficulties in fatty acid absorption. Increasing levels of polyphenols, which increase beta-oxidation, would be contradicted where there are difficulties in fatty acid absorption and metabolism.

Polyphenol supplements are frequently suggested as treatments for Alzheimer’s disease and Parkinson’s disease, however, both Alzheimer’s disease and Parkinson’s disease are associated with high homocyteine levels whereby there could be difficulties in fatty acid absoption. Polyphenol supplements could worsen Alzheimer’s disease and Parkinson’s disease. In the treatment of Alzheimer’s disease polyphenols have been full of promise but have failed to deliver effective treatments.

Caffeine pills have nowhere near the same effect as coffee. There must be more to the effects of coffee than caffeine and that something more is the polyphenol contents of coffee and the effect of those polyphenols on beta-oxidation.