Deficiencies in vitamin D in schizophrenia, bipolar disorder, Alzheimer’s disease and Parkinson’s disease

Low levels of vitamin D are associated with schizophrenia, bipolar disorder Alzheimer’s disease and Parkinson’s disease. Vitamin D is a fat soluble vitamin. Bile acids are required for fat absorption. Taurocholic acid is a bile acid that is a conjugate of cholic acid with taurine. Taurochenodeoxycholic acid is a bile acid formed in the liver by conjugation of chenodeoxycholic acid with taurine. Taurine increases absorption of vitamin D.

There are low levels of vitamin D in schizophrenia, bipolar disorder, Alzheimer’s disease and Parkinson’s disease due to dysregulation of taurine synthesis in these illnesses attendant on dysregulation of the transsulfuration pathway which synthesizes L-cysteine from which taurine is synthesized.

Supplementation with vitamin D in these illnesses heretofore has not helped much as difficulties in fat absorption have not been addressed. Taurine, which regulates calcium homeostasis besides aiding in fat absorption, taurine would be taken with vitamin D, vitamin K and calcium carbonate to address low levels of vitamin D where there are chronic illnesses. Vitamin K is also a fat soluble vitamin whose abosoprtion could be impaired by low levels of taurine.

Polyphenols, homocysteine, Parkinson’s disease and Alzheimer’s disease

High homocysteine levels indicate the transsulfuration pathway (homocysteine to L-cysteine) is dysregulated. Taurine is synthesized from L-cysteine. Taurine is needed to form various bile acids. Bile acids are needed for fat absorption.

Polyphenols can increase beta-oxidation which can lead to serious difficulties if there are difficulties in fat absorption which are likely if there are high homocysteine levels.

Many illnesses for which polyphenols have been postulated to be treatments are associated with high levels of homocysteine, however, where there are high homocysteine levels there could be difficulties in fatty acid absorption. Increasing levels of polyphenols, which increase beta-oxidation, would be contradicted where there are difficulties in fatty acid absorption and metabolism.

Polyphenol supplements are frequently suggested as treatments for Alzheimer’s disease and Parkinson’s disease, however, both Alzheimer’s disease and Parkinson’s disease are associated with high homocyteine levels whereby there could be difficulties in fatty acid absoption. Polyphenol supplements could worsen Alzheimer’s disease and Parkinson’s disease. In the treatment of Alzheimer’s disease polyphenols have been full of promise but have failed to deliver effective treatments.

Caffeine pills have nowhere near the same effect as coffee. There must be more to the effects of coffee than caffeine and that something more is the polyphenol contents of coffee and the effect of those polyphenols on beta-oxidation.

In schizophrenia all paths lead to the transsulfuration pathway

With a dysregulation of the transsulfuration pathway (homocysteine to L-cysteine) sufficient L-cysteine for iron-sulfur cluster formation is not synthesized. Sulfur for iron-sulfur cluster biogenesis is derived from L-cysteine. Supplemental iron increases levels of iron-sulfur proteins. Supplemental iron can partly compensate for dysregulation of the transsulfuration pathway in schizophrenia. Selenomethionine, the food form of selenium is metabolized by enzymes in the transsulfuration pathway. Metabolism off Se-methylselenocysteine by-passes the transsulfuration pathway whereby Se-methylselenocysteine can provide bioavailable selenium for individuals with schizophrenia. Taurine is synthesized from L-cysteine. With L-cysteine not synthesized appropriately taurine will not be synthesized at appropriate levels. Taurine is needed to form various bile acids, With low levels of taurine there will not be sufficient taurine conjugated bile acids. Fat absorption requires bile acids. With low levels of taurine due to low levels of L-cysteine fat absorption will be impaired. Supplemental taurine and supplemental essential fatty acids will compensate for low levels of taurine due to low levels of L-cysteine which are in turn due to dysregulation of the transsulfuration pathway. Taurine by sparing L-cysteine will also increase levels of L-cysteine.

An Important Warning: No supplements that contain L-cysteine or L-methionine should be supplemented. And no supplements that reduce cystine to L-cysteine, such as lipoic acid, should be supplemented. See the Treatment page for supplements that can be of assistance in the treatment of schizophrenia.

Inflammation, taurine and essential fatty acids in schizophrenia, Parkinson’s disease and Alzheimer’s disease

Inflammation is associated with schizophrenia, Parkinson’s disease and Alzheimer’s disease. A point I have strongly stressed is that the transsulfuration pathway is dysregulated in many neurological illnesses. With the transsulfuration pathway dysregulated there will de decreased levels of L-cysteine which is synthesized via the transsulfuration pathway. Decreased levels of l-cysteine will lead to decreased levels of taurine. Taurine is synthesized from L-cysteine. The bile acid, taurocholate, is synthesized from taurine. With low levels of taurine, essential fatty acids are not absorbed sufficiently. Inflammation in schizophrenia, Parkinson’s disease and Alsheimer’s disease could be due to low levels of taurine which leads to failures to absorb sufficient fatty acids with inflammation resulting.

Taurine chloramine which is synthesized from taurine is also an important immunomodulatory.