Iron positively regulates other enzymes in the citric acid cycle besides aconitase

Besides aconitase iron positively affects three other citric acid cycle enzymes, the enzymes being citrate synthase, isocitric dehydrogenase synthase and and succinate dehydrogenase.

Iron-dependent changes in cellular energy metabolism: influence on citric acid cycle and oxidative phosphorylation

Horst Oexle, Erich Gnaiger and Gunter Weiss Biochimica et Biophysica Acta (BBA) – Bioenergetics


Iron modulates the expression of the critical citric acid cycle enzyme aconitase via a translational mechanism involving iron regulatory proteins. Thus, the present study was undertaken to investigate the consequences of iron perturbation on citric acid cycle activity, oxidative phosphorylation and mitochondrial respiration in the human cell line K-562. In agreement with previous data iron increases the activity of mitochondrial aconitase while it is reduced upon addition of the iron chelator desferrioxamine (DFO). Interestingly, iron also positively affects three other citric acid cycle enzymes, namely citrate synthase, isocitric dehydrogenase, and succinate dehydrogenase, while DFO decreases the activity of these enzymes. Consequently, iron supplementation results in increased formation of reducing equivalents (NADH) by the citric acid cycle, and thus in increased mitochondrial oxygen consumption and ATP formation via oxidative phosphorylation as shown herein. This in turn leads to downregulation of glucose utilization. In contrast, all these metabolic pathways are reduced upon iron depletion, and thus glycolysis and lactate formation are significantly increased in order to compensate for the decrease in ATP production via oxidative phosphorylation in the presence of DFO. Our results point to a complex interaction between iron homeostasis, oxygen supply and cellular energy metabolism in human cells.

A proposed experiment

Tea very significantly decreases iron absorption as tannins in tea form insoluble complexes with iron. Iron in iron/tannin-complexes would also not be bioavailable in the gut. Still individuals who drink tea can have normal iron levels. The question is whether blood measures of iron status are a complete picture of iron status. In the proposed experiment rats would be given tea by gavage. Levels of tea given by gavage would not be levels that would cause anemia. What would be tested is the status of aconitase 1 in the gut and the effect of the tea on the citric acid cycle in the gut. Aconitase 1 is regulated by iron levels where with high levels of iron aconitase 1 acts as an aconitase but with low levels of iron aconitase 1 switches to IRP1 which regulates iron regulated proteins. Levels in the gut of citrate synthase, isocitric dehydrogenase and succinate dehydrogenase would would also be tested as iron positively affects these enzymes also. Blood levels of iron would also be tested. The hypothesis is that the effect of tea on the gut in terms of aconitase 1 and other enzymes in the citric acid cycle will be more pronounced than blood levels of iron would indicate.

Thiamine deficiencies and the citric acid cycle

Thiamine deficiencies result in very pronounced decreases in citric acid cycle enzymes.

Neurochem Int. 2004 Dec;45(7):1021-8.

Tricarboxylic acid cycle enzymes following thiamine deficiency.

Bubber P, Ke ZJ, Gibson GE.


Thiamine (Vitamin B1) deficiency (TD) leads to memory deficits and neurological disease in animals and humans. The thiamine-dependent enzymes of the tricarboxylic acid (TCA) cycle are reduced following TD and in the brains of patients that died from multiple neurodegenerative diseases. Whether reductions in thiamine or thiamine-dependent enzymes leads to changes in all TCA cycle enzymes has never been tested. In the current studies, the pyruvate dehydrogenase complex (PDHC) and all of enzymes of the TCA cycle were measured in the brains of TD mice. Non-thiamine-dependent enzymes such as succinate dehydrogenase (SDH), succinate thiokinase (STH) and malate dehydrogenase (MDH) were altered as much or more than thiamine-dependent enzymes such as the alpha-ketoglutarate dehydrogenase complex (KGDHC) (-21.5%) and PDHC (-10.5%). Succinate dehydrogenase (SDH) activity decreased by 27% and succinate thiokinase (STH) decreased by 24%. The reductions in these other enzymes may result from oxidative stress because of TD or because these other enzymes of the TCA cycle are part of a metabolon that respond as a group of enzymes. The results suggest that other TCA cycle enzymes should be measured in brains from patients that died from neurological disease in which thiamine-dependent enzymes are known to be reduced. The diminished activities of multiple TCA cycle enzymes may be important in our understanding of how metabolic lesions alter brain function in neurodegenerative disorders.

Aconitase 1 and on-off disorders

Aconitase 1 (ACO1) is an enzyme in the citric acid cycle. Aconitase 1 is a dual function protein. Upon loss of an iron-sulfur cluster ACO1  becomes iron regulatory protein 1 (IRP1).  IRP1 affects stability of mRNA transcripts of proteins involved in iron metabolism such as ferritin, DMT1, which is an iron transporter, and ferroportin, which is the only known iron exporter.   Increasing iron levels switches IRP1 to ACO1 as IRP1 gains an iron-sulfur cluster. With a 4Fe-4S iron-sulfur cluster ACO1 can participate in the citric acid cycle and generate ATP.

I think on-off disorders are due to wide swings in ACO1/IRP1. Suddenly the citric acidĀ  cycle is functioning and then the citric acid cycle is not functioning while at the same time there are swings in the regulation of iron regulated proteins. Dietary iron could be associated with swings in on-off symptoms.An added wrinkle isĀ  that high IRP1 levels adversely affects copper absorption, however, copper is needed for iron metabolism.

I very much like answers that answer everything. On-off symptoms are prominent in lots and lots of illnesses. There is, of course, bipolar disorder but a lot of depressions cycle rapidly and are some of the most difficult depressions to treat.  Parkinson’s disease has a very prominent on-off symptoms.  In Parkinson’s disease there are  indications that iron metabolism is  dysregulated. There may be a unitary explanation for cycling disorders.