Vitamin C and glucose transporters

I have been arguing that sodium-dependent transporters are dysregulated in epigenetic illnesses. The sodium-dependent vitamin C transporter (SVCT) could be dysregulated in epigenetic illnesses. Dedydroascorbic acid, which is oxidized vitamin C, is transported by glucose transporters. With the SVCT dysregulated dedydroascorbic acid must be available to be transported by glucose transporters.

Taking antioxidants with vitamin C could reduce any dedydroascorbic acid that is produced to ascorbic acid. Vitamin C must then not be taken with other antioxidants such as selenium, coffee or tea. Vitamin C would also not be taken with carbohydrates or sugar as glucose could competitively inhibit the transport of vitamin C by glucose transporters. Fat soluble antioxidant supplements, such as vitamin E and carotenoids should not be taken in much more than RDA amounts as fat soluble antioxidants could reduce dedydroascorbic acid to ascorbic acid throughout the day. A selling point of vitamin E has been that vitamin E reduces oxidized vitamin C but as it turns out this is a very large negative. With vitamin C inside cells due to transport of dedydroascorbic acid into cells by glucose transporters TET enzymes could start working which would hopefully re-regulate SVCTs.