Difficulties in iron-sulfur cluster formation can lead to iron accumulation in mitochondria

In Friedreich ataxia iron-sulfur clusters are not formed, due to deficiencies in frataxin which results in iron accumulation in mitochondria. The relevant point is that problems in iron-sulfur cluster formation can be associated with iron accumulation in mitochondria and iron toxicity. The point I have been making is that there are difficulties in synthesizing iron-sulfur clusters in many neurological illnesses due to dysregulation of the transsulfuration pathway which synthesizes L-cysteine. L-cysteine supplies sulfur for iron-sulfur cluster formation.

Iron chelators are now being investigated as treatments for Alzheimer’s disease and Parkinson’s disease. If iron is being accumulated in cells in Alzheimer’s disease and Parkinson’s disease due to difficulties in iron-sulfur cluster formation then iron chelators would not be appropriate treatments. Iron-sulfur cluster formation is increased by supplemental iron. Iron chelators by decreasing iron would decrease iron–sulfur cluster formation leading to iron accumulation in mitochondria and iron toxicity.

Cholesterol, taurine and Alzheimer’s disease

In Alzheimer’s disease there are high levels of homocysteine which points to the transsulfuration pathway (homocysteine to L-cysteine) being dysregulated in Alzheimer’s disease. Taurine is synthesized from L-cysteine. Taurine lowers LDL cholesterol levels. High LDL cholesterol levels, which increase the risk of Alzheimer’s disease, could be connected to the dysregulation of transsulfuration pathway as with dysregulation of the transsulfuration pathway there will be low levels of taurine which will increase cholesterol levels.

Polyphenols, homocysteine, Parkinson’s disease and Alzheimer’s disease

High homocysteine levels indicate the transsulfuration pathway (homocysteine to L-cysteine) is dysregulated. Taurine is synthesized from L-cysteine. Taurine is needed to form various bile acids. Bile acids are needed for fat absorption.

Polyphenols can increase beta-oxidation which can lead to serious difficulties if there are difficulties in the metabolism of fatty acids which are likely if there are high homocysteine levels.

Many illnesses for which polyphenols have been postulated to be treatments are associated with high levels of homocysteine, however, where there are high homocysteine levels there could be difficulties in fatty acid metabolism. Increasing levels of polyphenols, which increase beta-oxidation, would be contradicted where there are difficulties in fatty acid metabolism.

Polyphenol supplements are frequently suggested as treatments for Alzheimer’s disease and Parkinson’s disease, however, both Alzheimer’s disease and Parkinson’s disease are associated with high homocyteine levels whereby there could be difficulties in fatty acid metabolism. Polyphenol supplements could worsen Alzheimer’s disease and Parkinson’s disease. In the treatment of Alzheimer’s disease polyphenols have been full of promise but have failed to deliver effective treatments.

Caffeine pills have nowhere near the same effect as coffee. There must be more to the effects of coffee than caffeine and that something more is the polyphenol contents of coffee and the effect of those polyphenols on beta-oxidation.

DHA and Alzheimer’s disease

Docosahexaenoic acid (DHA) levels are low in Alzheimer’s disease. DHA is synthesized from alpha-linoelic acid which is an essential fatty acid which must be obtained from the diet. For DHA to be synthesized from alpha-linoelic acid, alpha linoleic acid must first be absorbed.

A meta-analysis indicates that homocysteine levels are significantly high in Alzheimer’s disease. High homocysteine levels in Alzheimer’s disease indicate the transsulfuration pathway is dysregulated in Alzheimer’s disease as homocysteine is not being metabolized to L-cysteine which is what the transsulfuration pathway does.

With low levels of L-cysteine there will be low levels of taurine. Taurine is synthesized from L-cysteine. Taurine is needed for the formation of bile acids which are needed for fat absorption. With alpha-linoelic acid not absorbed in Alzheimer’s disease due to low levels of taurine synthesis of DHA will be impaired in Alzheimer’s disease which is what is seen is Alzheimer’s disease. Effectiveness of supplementation with DHA in Alzheimer’s disease could be limited due to a failure to absorb DHA due to low levels of taurine in Alzheimer’s disease.

Taurine only poorly crosses the blood-brain barrier. However, to assist with essential fatty acid absorption taurine does not have to cross the blood-barrier. Taurine by enhancing fat absorption can enhance brain function.

Homotaurine has has been shown to be a promising therapy for Alzheimer’s disease. In Alzheimer’s disease taurine could be taken with with linoelic acid and/or alpha linoelic acid.

There is lots of controversy as to what fatty acid abnormalities are present in Alzheimer’s disease. An important point about essential fatty acid supplements is that without supplemental taurine supplementing with essential fatty acids results in brain fog.

Fatty acids synthesized from essential fatty acids in schizophrenia

Levels of arachidonic acid (AA), which is synthesized from linoleic acid and docosahexaenoic acid (DHA) which is synthesized from alpha linoelic acid are significantly lower (P < 0.001) in drug-naive patients with schizophrenia compared to controls. See also Reddy et al. Linoleic acid and alpha linoelic are the two essential fatty acids. Essential fatty acids must be obtained from the diet. Essential fatty acids must also be absorbed to be effective.

With difficulties in fat absorption due to low levels of taurine, which is required for synthesis of various taurine conjugated bile acids, absorption of essential fatty acids would be impaired which would lead to low levels of arachidonic acid and low levels of docosahexaenoic acid which is what is seen in schizophrenia.

Taurine is synthesized from L-cysteine. L-cysteine is synthesized by the transsulfuration pathway. With dysregulation of the transsulfuration pathway in schizophrenia there will be low levels of L-cysteine and low levels of taurine which will lead to low levels of various omega-6 and omega-3 fatty acids in schizophrenia.

Inflammation, alpha-linoleic acid and taurine in schizophrenia, Parkinson’s disease and Alzheimer’s disease

Inflammation is associated with schizophrenia, Parkinson’s disease and Alzheimer’s disease. A point I have strongly stressed is that the transsulfuration pathway is dysregulated in many neurological illnesses. With the transsulfuration pathway dysregulated there will de decreased levels of L-cysteine which is synthesized via the transsulfuration pathway. Decreased levels of l-cysteine will lead to decreased levels of taurine. Taurine is synthesized from L-cysteine. The bile acid, taurocholate, is synthesized from taurine. With low levels of taurocholate fatty acids will not be absorbed sufficiently. Alpha–linoleic acid is an essential fatty acid that must be obtained from diets. Diets high in alpha-linoleic acid are protective against inflammation. With low levels of taurocholate sufficient alpha-linoleic acid will not be absorbed which will lead to inflammation. . Inflammation in schizophrenia, Parkinson’s disease and Alsheimer’s disease could be due to low levels of taurine which leads to failures to absorb sufficient alpha-linoleic acid which is protective against inflammation.

N-acetyl-l-cysteine and lipoic acid

If you are taking n-acetyl-l-cysteine or lipoic acid you should stop immediately. N-acetyl-l-cysteine and lipoic acid increase L-cysteine levels by reducing cystine to L-cysteine. Cystine, however, has to enter cells via the cystine/glutamate antiporter so l-glutamate can be transported out. Any supplement that decreases cystine levels is very, very dangerous.  Blocking the cystine/glutamate antiporter induces ferroptosis which can kill cells.